報告題目:Some Recent Results on Wasserstein Convergence Rates for Empirical Measures
報告專家:黎懷謙副教授
報告地點:9-122會議室
報告時間:2024年3月23日 16:00-17:00
報告摘要:It is well known that, given a stationary and ergodic Markov process, various limit theorems for the empirical measure can be derived. It is interesting but usually challenging to quantify the rate of convergence of empirical measures to the target measure in terms of metrics on probability measures. The talk is about some recent results on rates of convergence for the Wasserstein metric between empirical measures and the target measure associated with i.i.d. sequences, diffusion processes and fractional Brownian motions.
報告人簡介:黎懷謙,,2011年獲得北京師范大學(xué)和法國勃艮第大學(xué)博士學(xué)位,;畢業(yè)之后跟吳黎明教授做了兩年博士后,,并在澳洲國立大學(xué)和麥考瑞大學(xué)做過一年的博士后;曾就職于四川大學(xué)數(shù)學(xué)學(xué)院,;2018年至今在天津大學(xué)應(yīng)用數(shù)學(xué)中心工作,。主要研究領(lǐng)域是隨機分析,相關(guān)研究論文發(fā)表于Journal de Mathématiques Pures et Appliquées,、Journal d'Analyse Mathématique,、Science China Mathematics等期刊,研究成果被Inventiones mathematicae等論文引用,。
作者:胡軍浩,;編輯:劉鹍;審核:郭暉,;上傳:郭敏,。